首页> 外文OA文献 >Chemometric classification and quantification of olive oil in blends with any edible vegetable oils using FTIR-ATR and Raman spectroscopy
【2h】

Chemometric classification and quantification of olive oil in blends with any edible vegetable oils using FTIR-ATR and Raman spectroscopy

机译:使用FTIR-ATR和拉曼光谱法对与任何食用植物油混合的橄榄油进行化学计量学分类和定量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Samples of olive oils (n = 67) from different qualities and samples of other vegetable edible oils (including soybean, sunflower, rapeseed, corn oil etc; n = 79) were used in this study as pure oils. Previous to spectroscopy analysis, a transesterification step was applied to the pure vegetable oil samples and all the different oil blends were then prepared to create in-house blended samples. Spectral acquisition was performed with typical parameters to collect the FTIR and Raman fingerprints. For the olive/non-olive classification model, three classification strategies have been applied: (i) one input-class (1iC) classification; (ii) two input-class (2iC) classification; and (iii) one input-class plus one ‘dummy’ class classification (or pseudo two input-class (p2iC) classification). The multivariate classification methods used were k-nearest neighbours (kNN), partial least squared-discriminant analysis (PLS-DA), one-class partial least squares (OCPLS), support vector machine classification (SVM-C), and soft independent modelling of class analogies (SIMCA). The multivariate quantification method used was partial least square-regression (PLS-R). FTIR fingerprints showed excellent classification ability to distinguish pure olive from non-olive oil. When PLS-DA or SVM-C techniques are applied, 100% of olive oil samples and 92% of other vegetable edible oils are correctly classified. In general FTIR fingerprints were more discriminative than Raman's in both classification and regression scenarios.
机译:本研究使用不同质量的橄榄油样品(n = 67)和其他植物食用油样品(包括大豆,向日葵,菜籽油,玉米油等; n = 79)作为纯油。在进行光谱分析之前,将酯交换步骤应用于纯植物油样品,然后准备所有不同的油混合物以创建内部混合样品。使用典型参数执行光谱采集,以收集FTIR和拉曼指纹。对于橄榄/非橄榄分类模型,已应用了三种分类策略:(i)一种输入类别(1iC)分类; (ii)两种输入类别(2iC)分类; (iii)一个输入类别加一个“虚拟”类别分类(或伪两个输入类别(p2iC)分类)。使用的多元分类方法是k最近邻(kNN),偏最小二乘判别分析(PLS-DA),一类偏最小二乘(OCPLS),支持向量机分类(SVM-C)和软独立建模类比(SIMCA)。使用的多元量化方法是偏最小二乘回归(PLS-R)。 FTIR指纹图谱显示出出色的分类能力,可以区分纯橄榄油和非橄榄油。当使用PLS-DA或SVM-C技术时,正确分类了100%的橄榄油样品和92%的其他植物食用油。通常,在分类和回归场景中,FTIR指纹比拉曼指纹更具区分性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号